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Abstract- 

As we taken micro cluster in streaming data, cluster data streaminghas been become 

an important technique, which used for data and knowledge technology. A generally we 

approach is to describing the data stream in Problem solving-time with an onlineprocess into 

a huge number of so called micro clusters. Micro clusters represent provincial density 

estimates by aggregating the information of every data points in a defined particular area. On 

Requirement, a converted using conventional clustering algorithm is used at in a second 

offline step by step to re-cluster theMicroclusters into huge final clusters. For re-clustering, 

the midpoint of the micro clusterissuing as pseudo points are with the density assessment 

used as their converted weights. After all, contain information Regarding density in the area 

between microclusters is not conserve in the online process and using re-clustering is 

established on possibly wrong assumptions about the sharing of data within process between 

microclusters. This paper describes DATABSAESTREAM, the first step micro clusterbased 

on online clustering basic that especially captures the density between this microclusters 

along a shared density graph. The density information using in this graph is then shows for 

re-clustering based on which actual density between two adjacent micro clusters. We present 

that the space and time complexity of maintains using the shared density graph. Experiment 

on a broad range of fabricatedand data sets highlight particular that using shared density 

improves is clustering quality up to other popular data stream clustering many methods which 

require the formation of a huger number of mini micro-clusters to produce comparable results over here. 

 

Index Terms— DATABASESTREAM, Data mining,density-based clustering, data stream clustering. 

 

I. INTRODUCTION 

A RE-CLUSTERING data stream [2], [3], 

[5], [7] has become auseful technique for data and 

knowledge technology information. A data stream 

is an arranged and potentiallyunbounded 

arrangement of data points using. Such Data 

streams ofarriving data are developed for every 

type of techniqueand adding GPS data from latest 

smart phones, webstream data, computer network 

operating data, telecommunication connection 

between data, and reading from wireless sensor 

networks.Data stream clustering is normally done 

as a two-step process withonline step which 

summary the data into every micro clusters and 

grid cells then, other step in an offline process,these 

all micro-clusterare re-clustered or merged into a 

less number of final clusters. Thereclustering 

herefor an offline process and which thus not time 

critical, it is generally not presented in detail in 

paper about new data stream clustering algorithms. 

Most papers suggest touse anexisting conventionalis 

clustering algorithm, 

wherethemicroclustersareusedaspseudopoints in 

cluster.Other approach used in Den Stream [4] is to 

use reachablewhere all micro clusters areless than a 

provided distance from each other, linked balanced 

to form particular clusters. Grid-based algorithms 

merge two adjacent dense grid cells to form many 

clustersCurrent re-clustering approaches 

completely ignore everydata density in the area 

between the micro-clusters and thus might join 

micro clusters which are 

closetogetherbutatthesametimeseparatedbyasmallar

ea of very low density. To locate this problem, 

introduced an increase to the gridbased 

DBStreamalgorithm based on the concept of 

appealbetween two adjacent grids cell and showed 

itseffective process.We present this paper, we 

developing and checking a new process tolocate 
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this problem for the micro cluster-based algorithm. 

We present the technique of a shared density graph 

that we explicitly capture thedensityin main data 

between micro clusters during clustering and then 

show how the graph can be used as for re-clustering 

micro-clusters. Usingofourknowledge, this paper is 

present the first to propose and investigate using a 

shared-density-based re-clustering this approach 

for data stream clustering process.The paper is 

balancing as follows. After a discussion of the 

background process in Section 2, we discuss in 

Section 3 the shared density graph for and the 

algorithm used tocapturethedensitybetweenmany 

microclustersintheonline process. here In Section 4 

we explain the re-clustering approach which is 

based on clustering or finding connected in the 

shared density the graph. In Section 5 we present 

the computational complexity of the maintaining 

the shared density graph. In Section 6 contains 

detailed experiments are with synthetic and data 

sets. We concluding the paper with Section7 and 

etc. 

II. BACKGROUND 

            Density-based clustering is a well-

researched area and we can only give a very brief 

overview here. DBSCAN [10] and several of its 

improvements can be seen as the proto typical 

density-based clustering approach. DBSCAN 

estimates the density around each data point by 

counting the number of points in a user-specified 

eps-neighborhood and applies user-specified 

thresholds to identify core, border and noise points. 

In a second step, core points are joined into a 

cluster if they are density-reachable (i.e., there is a 

chain of core points where one falls inside the eps-

neighborhood of the next). Finally, border points 

are assigned to clusters. Other approaches are 

based on kernel density estimation (e.g., 

DENCLUE [11]) or use shared nearest neighbors 

(e.g., SNN [12], CHAMELEON [13]). 

          However, these algorithms were not 

developed with data streams in mind. A data stream 

is an ordered and potentially unbounded sequence 

of data points X = hx1; x2; x3; : : :i. It is not 

possible to permanently store all the data in the 

stream which implies that repeated random access 

to the data is infeasible. Also, data streams exhibit 

concept drift over time where the position and/or 

shape of clusters changes, and new clusters may 

appear or existing clusters disappear. This makes 

the application of existing clustering algorithms 

difficult. Data stream clustering algorithms limit 

data access to a single pass over the data and adapt 

to concept drift. Over the last 10 years, many 

algorithms for clustering data streams have been 

proposed [5], [6], [8], [9], [14], [15], [16], [17], 

[18], [19], [20]. Most data stream clustering 

algorithms use a two-stage online/offline approach 

[4]: 

1) Online: Summarize the data using a set of k0 

microclusters organized in a space-efficient data 

structure, which also enables fast lookup. Micro-

clusters are representatives for sets of similar data 

points and are created using a single pass over the 

data (typically in real time when the data stream 

arrives). Micro-clusters are typically represented by 

cluster centers and additional statistics as weight 

(density) and dispersion (variance). Each new data 

point is assigned to its closest (in terms of a 

similarity function) micro-cluster. Some algorithms 

use a grid instead and non-empty grid cells 

represent microclusters (e.g., [8], [9]). If a new data 

point cannot be assigned to an existing micro-

cluster, a new microcluster is created. The 

algorithm might also perform some housekeeping 

(merging or deleting microclusters) to keep the 

number of micro-clusters at a manageable size or to 

remove noise or information outdated due to 

concept drift. 

2) Offline: When the user or the application 

requires a clustering, the k0 micro-clusters are 

reclustered into k (k _ k0) final clusters sometimes 

referred to as macro-clusters. Since the offline part 

is usually not regarded time critical, most 

researchers only state that they use a conventional 

clustering algorithm (typically k-means or a 

variation of DBSCAN [10]) by regarding the 

micro-cluster center positions as pseudo-points. 

The algorithms are often modified to take also the 

weight of micro-clusters into account. 

 
 

Fig. 1. Problem with reclustering when dense areas 

are separated bysmall areas of low density with (a) 

micro clusters and (b) grid cells. 

 

              Reclustering methods based solely on 

micro-clusters only, take closeness of the micro-

clusters into account. This makes it likely that two 

micro-clusters which are close to each other, but 

separated by an area of low density still will be 
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merged into a cluster. Information about the 

density between micro-clusters is not available 

since the information does not get recorded in the 

online step and the original data points are no 

longer available. Figure 1(a) illustrates the problem 

where the micro-clusters MC1 and MC2 will be 

merged as long as their distance d is low. This is 

even true when density-based clustering methods 

(e.g., DBSCAN) are used in the offline reclustering 

step, since the reclustering is still exclusively based 

on the micro-cluster centers and weights. 

           Several density-based approaches have been 

proposed for data-stream clustering. Density-based 

data stream clustering algorithms like D-Stream [7] 

and MR-Stream [8] use the idea of density 

estimation in grid cells in the online step. In the 

reclustering step these algorithms group adjacent 

dense grid cells into clusters. However, Tu and 

Chen [9] show that this leads to a problem when 

the data points within each cell are not uniformly 

distributed and two dense cells are separated by a 

small area of low density.  Figure 1(b) illustrates 

this problem where the grid cells 1 through 6 are 

merged because 3 and 4 are adjacent ignoring the 

area of low density separating them. However, this 

comes at high computational cost. MR-Stream [8] 

approaches this problem by dynamically creating 

grids at multiple resolutions using a quad tree. 

LeaDen-Stream [20] addresses the same problem 

by introducing the concept of representing a MC by 

multiple mini-micro leaders and uses this finer 

representation for clustering. 

              For non-streaming clustering, 

CHAMELEON [13] proposes a solution to the 

problem by using both closeness and 

interconnectivity for clustering. An extension to 

DStream [9] implements this concept for data 

stream clustering in the form of defining attraction 

between grid cells as a measure of 

interconnectivity. Attraction information is 

collected during the online clustering step. For each 

data point that is added to a grid cell a hypercube of 

a userspecified size is created and for each adjacent 

grid the fraction of the hypercube’s volume 

intersecting with that grid cell is recorded as the 

attraction between the point and that grid cell. The 

attraction between a grid cell and one of its 

neighbors is defined as the sum of the attractions of 

all its assigned points with the neighboring cell. For 

reclustering, adjacent dense grid cells are only 

merged if the attraction between the cells is high 

enough. Attraction measures the closeness of data 

points in one cell to neighboring cells and not 

density. It is also not directly applicable to general 

microclusters. In the following we will develop a 

technique to obtain density-based connectivity 

estimated between microclusters directly from the 

data. 

 

III. THE DBSTREAM ONLINE 

COMPONENT 
            Typical micro-cluster-based data stream 

clustering algorithms retain the density within each 

micro-cluster (MC) as some form of weight (e.g., 

the number of points assigned to the MC). Some 

algorithms also capture the dispersion of the points 

by recording variance. For reclustering, however, 

only the distances between the MCs and their 

weights are used. In this setting, MCs which are 

closer to each other are more likely to end up in the 

same cluster. This is even true if a density-based 

algorithm like DBSCAN [10] is used for 

reclustering since here only the position of the MC 

centers and their weights are used. The density in 

the area between MCs is not available since it is 

not retained during the online stage. 

              The basic idea of this work is that if we 

can capture not only the distance between two 

adjacent MCs but also the connectivity using the 

density of the original data in the area between the 

MCs, then the reclustering results may be 

improved. In the following we develop 

DBSTREAM which stands for density-based 

stream clustering. 

3.1 Leader-based Clustering  

       Leader-based clustering was introduced by 

Hardigan [21] as a conventional clustering 

algorithm. It is straight-forward to apply the idea to 

data streams (see, e.g., [20]). 

     DBSTREAM represents each MC by a leader (a 

data point defining the MC’s center) and the 

density in an area of a user-specified radius r 

(threshold) around the center. This is similar to 

DBSCAN’s concept of counting the points is an 

eps-neighborhood, however, here the density is not 

estimated for each point, but only for each MC 

which can easily be achieved for streaming data. A 

new data point is assigned to an existing MC 

(leader) if it is within a fixed radius of its center. 

The assigned point increases the density estimate of 

the chosen cluster and the MC’s center is updated 

to move towards the new data point. If the data 

point falls in the assignment area of several MCs 

then all of them are updated. If a data point cannot 

be assigned to any existing MC, a new MC (leader) 

is created for the point. Finding the potential 
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clusters for a new data point is a fixed-radius 

nearest-neighbor problem [22] which can be 

efficiently dealt with for data of moderate 

dimensionality using spatial indexing data 

structures like a k-d tree [23]. Variations of this 

simple algorithm were suggested in [24] for outlier 

detection and in [25] for sequence modeling. The 

base algorithm stores for each MC a weight which 

is the number of data points assigned to the MC 

(see w1 to w4 in Figure 2). The density can be 

approximated by this weight over the size of the 

MC’s assignment area. Note that we use for 

simplicity the area here, however, the approach is 

not restricted to two-dimensional data. For higher-

dimensional data volume is substituted for area. 

Definition 3.1. The density of MC iis estimated 

by, 

 
wherewi is the weight and Ai, the area of the circle 

with radius r around the center of MC i. 

3.2 Capturing Shared Density 

Capturing shared density directly in the 

online component is a new concept introduced in 

this paper. The fact, that in dense areas MCs will 

have an overlapping assignment area, can be used 

to measure density between MCs by counting the 

points which are assigned to two or more MCs. The 

idea is that high density in the intersection area 

relative to the rest of the MCs’ area means that the 

two MCs share an area of high density and should 

be part of the same macrocluster. In the example in 

Figure 2 we see that MC2 and MC3 are close to 

each other and overlap. However, the shared 

weight s2;3 is small compared to the weight of 

each of the two involved MCs indicating that the 

two MCs do not form a single area of high density. 

On the other hand, MC3 andMC4 are more distant, 

but their shared weight s3;4 is large indicating that 

both MCs form an area of high density and thus 

should form a single macro-cluster. The shared 

density between two MCs can be estimate by: 

 

 

 

 

Fig. 2. MC1 is a single MC. MC2 and MC3 are 

close to each other butthe density between them is 

low relative to the two MCs densities whileMC3 

and MC4 are connected by a high density area. 

 

Definition 3.2. The shared density between two 

MCs, i  and j, is estimated by  

 
wheresij is the shared weight and Aij is the size of 

the overlapping area between the MCs. 

Based on shared densities we can define a shared 

density graph. 

Definition 3.3. A shared density graph Gsd = 

(V;E) isan undirected weighted graph, where the 

set of verticesis the set of all MCs, i.e., V (Gsd) = 

MC, and the setof edges   

 
represents all the pairs of MCs for which we 

havepairwise density estimates. Each edge is 

labeled with thepairwise density estimate ^_ij . 

Note that most MCs will not share density with 

each other in a typical clustering. This leads to a 

very sparse shared density graph. This fact can be 

exploited for more efficient storage and 

manipulation of the graph. We represent the sparse 

graph by a weighted adjacency list S. Furthermore, 

during clustering we already find all fixed-radius 

nearest-neighbors. Therefore, obtaining shared 

weights does not incur any additional increase in 

search time. 

3.4 Fading and Forgetting Data 

To adapt to evolving data streams we use the 

exponential fading strategy introduced in 

DenStream [6] and used in many other algorithms. 

Cluster weights are faded in 

 every time step by a factor of where  

> 0 is a user-specified fading factor. We 

implement fading in a similar way as in D-Stream 

[9], where fading is only applied when a value 

changes (e.g., the weight of a MC is updated). For 

example, if the current time-step is t = 10 and the 

weight w was last updated at tw = 5 then we apply 

for fading the factor  resulting in the 

correct fading for five time steps. In order for this 

approach to work we have to keep a timestamp 

with the time when fading was applied last for each 

value that is subject to fading.  
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                 The leader-based clustering algorithm 

only creates new and updates existing MCs. Over 

time, noise will cause the creation of low-weight 

MCs and concept shift will make some MCs 

obsolete. Fading will reduce the weight ofthese 

MCs over time and the reclustering has a 

mechanism to exclude these MCs. However, these 

MCs will still be stored in memory and make 

finding the fixed-radius nearest neighbors during 

the online clustering process slower. This problem 

can be addressed by removing weak MCs and weak 

entries in the shared density graph. In the following 

we define weak MCs and weak shared densities. 

Definition 3.4.We define MC mci as a weak MC if 

its weight wi increases on average by less than one 

new data point in a user-specified time interval 

tgap. 

Definition 3.5.We define a weak entry in the 

shared density graph as an entry between two 

MCs, i and j, which on average increases its weight 

sij by less then  from new points in the time 

interval tgap. is the intersection factor related to 

the area of the overlap of the MCs relative to the 

area covered by MCs. 

The rational of using  is that the overlap 

areas are smaller than the assignment areas of MCs 

and thus are likely to receive less weight. will be 

discussed in detail in the  reclustering phase. 
        Let us assume that we check every tgap time 

step and remove weak MCs and weak entries in the 

shared density graph to recover memory and 

improve the clustering algorithm’s processing 

speed. To ensure that we only remove weak entries, 

we can use the weight  At any 

 
time, all entries that have a faded weight of less 

than wweak are guaranteed to be weak. This is easy 

to see since any entry that gets on average an 

additional weight of  during each tgap 

interval will have a weight of at least   
which is greater or equal to 

wweak. Noise entries (MCs and entries in the 

shared density graph) often receive only a single 

data point and will reach wweak after tgap time 

steps. 

Obsolete MCs or entries in the shared density 

graph stop to receive data points and thus their 

weight will be faded  till it falls below wweak and 

then they are removed. It is easy to show that for an 

entry with a weight w it will take  

time steps to reach wweak.  

Forexample, at = 0:01 and tgap = 1000 it will take 

1333 time steps for an obsolete MC with a weight 

of w = 10 to fall below wweak. The same logic 

applies to shared density entries using _wweak. 

Note that the definition of weak entries and wweak 

is only used for memory management purpose. 

Reclustering uses the definition of strong entries 

(see Section 4). Therefore, the quality of the final 

clustering is not affected by the choice of tgap as 

long as it is not set to a time interval which is too 

short for actual MCs and entries in the shared 

density graph to receive at least one data point. 

This clearly depends on the expected number of 

MCs and therefore depends on the chosen 

clustering radius r and the structure of the data 

stream to be clustered. A low multiple of the 

number of expected MCs is typically sufficient. 

The parameter tgap can also be dynamically 

adapted during running the clustering algorithm. 

For example tgap can be reduced to mark more 

entries as weak and remove them more often if 

memory or processing speed gets low. On the other 

hand, tgap can be increased during clustering if not 

enough structure of the data stream is retained. 
 

3.5 The Complete Online Algorithm 

    Algorithm 1 shows our approach and the used 

clustering data structures and user-specified 

parameters in detail. 

Micro-clusters are stored as a set MC. Each micro-

cluster is represented by the tuple (c;w; t) 

representing the clustercenter, the cluster weight 

and the last time it was updated, respectively. The 

weighted adjacency list S represents thesparse 

shared density graph which captures the weight of 

the data points shared by MCs. Since shared 

density estimates are also subject to fading, we also 

store a timestamp with each entry. Fading also 

shared density estimates is important since MCs are 

allowed to move which over time would lead to 

estimates of intersection areas the MC is not 

covering anymore. 
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The user-specified parameters r (the radius around 

the center of a MC within which data points will be 

assigned to the cluster) and  (the fading rate) are 

part of the base  algorithm. andwmin are 

parameters for reclustering and memory anagement 

and will be discussed later. 

                 Updating the clustering by adding a new 

data point x to the clustering is defined by 

Algorithm 1. First, we find all MCs for which x 

falls within their radius. This is the same as asking 

which MCs are within r from x, which is the 

fixedradius nearest neighbor problem which can be 

efficiently solved for data of low to moderate  

dimensionality [22]. If no neighbor is found then a 

new MC with a weight of 1 is created for x (line 4 

in Algorithm 1). If one or more neighbors are 

found then we update the MCs by applying the 

appropriate fading, increasing their weight and then 

we try to move them closer to x using the Gaussian 

neighborhood function h() (lines 7–9).  

         Next, we update the shared density graph 

(lines 10–13). To prevent collapsing MCs, we 

restrict the movement for MCs in case they come 

closer than r to each other (lines 15–19). Finally, 

we update the time step. 

                The cleanup process is shown in 

Algorithm 2. It is executed every tgap time steps 

and removes weak MCs andweak entries in the 

shared density graph to recover memory and 

improve the clustering algorithm’s processing 

speed.  

 

4SHAREDDENSITY-BASED 

RECLUSTERING 

Reclustering represents the algorithm’s offline 

component which uses the data captured by the 

online component. For simplicity we discuss two-

dimensional data first and later discuss implications 

for higher-dimensional data. For reclustering, we 

want to join MCs which are connected by areas of 

high density. This will allow us to form 

macroclusters of arbitrary shape, similar to 

hierarchical clustering with single-linkage or 

DBSCAN’s reachability, while avoiding joining 

MCs which are close to each other but are 

separated by an area of low density 

4.1 Micro-Cluster Connectivity 

       In two dimensions, the assignment area of a 

MC is given by . It is easy to show that the 

intersecting area between two circles with equal 

radius r and the centers exactly r apart from each 

other is   By normalizing the area 

of the circle to A = 1 (i.e., setting the radius to) 

 we get an intersection area A_ = 

0:391.or 39.1% of the circle’s area. Since we 

expect adjacent MCs i and j which form a single 

macro-cluster in a dense area to eventually be 

packed together till the center of one MC is very 

close to the r boundary of the other, 39.1% is the 

upper bound of the intersecting area. 
Algorithm 1 Update DBSTREAM clustering. 

 
Require: Clustering data structures initially empty 

or 0 

 
dset of MCs mc has elements mc = (c, w, t) d  

center, weight, last updatetime 

S  dweighted adjacency list for shared 

densitygraph sijS has an additional field t  d time 

of last update t ,dcurrenttimestep 

 

Require: User-specified parameters 

r d clusteringthreshold 

λ d fadingfactor 

tgapd cleanupinterval 

wmind minimumweight 

α d intersectionfactor 

 

1: functionUPDATE(x) d new data pointx 

2:      find FixedRadiusNN(x, ,r) 

3:          if|N|   <1then d create newMC 

4: add (c = x, t = t, w = 1)to 

5:        else d update 

existingMCs 

6: for each ido 

7: mci[w]mci[w]2−λ(t−mci[t])+1 

8: mci[c] mci[c] + h(x, 

mci[c])(xmci[c]) 

9: mci[t]t 

dupdate shared density 

10: foreachj where j >ido 

11: sij sij2−λ(t−sij[t])+1 

12: sij[t] t 

13: endfor 

14: endfor 

dprevent collapsing clusters 

15: for each(i,j) and j >ido 

16: if dist(mci[c], mcj[c]) < rthen 
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(ρ̂+ρ̂)/2 

← 

17: revert mci[c], mcj[c] to 

previouspositions 

18: endif 

19: endfor 

20: endif 

21: t t + 1 

22:   endfunction 

 
 

Algorithm 2 Cleanup process to remove inactive 

micro- clusters and shared density entries from 

memory. 

 
 

Require: λ, α, tgap, t, MC and S from the 

clustering. 

1: function CLEANUP( ) 

2: wweak =2−λtgap 

3: foreachmc do 

4: if mc[w] 2−λ(t−mc[t]) < wweak 

then 

5: remove weak mcfrom 

6: endif 

7: endfor 

8: foreachsij Sdo 

9: ifsij2−λ(t−sij[t])<αwweakthen 

10: remove weak shared density 

sijfrom S 

11: endif 

12: endfor 

13: end function 

 
 

Less dense clusters will also have a lower shared 

density. To detect clusters of different density 

correctly, we need to define connectivity relative to 

the densities (weights) of the participating clusters. 

That is, for two MCs, i and j, which are next to 

each other in the same macro-cluster we expect that  
i.e., the density between the 

MCs is similar to the average density inside the 

MCs. To formalize this idea we introduce the 

connectivity graph. 
 

Definition 4.1. The connectivity graph Gc = 

(V;E) is an undirected weighted graph with the 

micro clusters as vertices, i.e., V (Gc) = MC. The 

set of edges is defined by 
  

with sij is the weight in the 

intersecting area of MCs i and j and wi and wj are 

the MCs’ weights. The edges are labeled with 

weights given by cij . 
 

 

Note that the connectivity is not calculated as 

 and thus has to be corrected for the 

difference in the size of the area of the MCs and the 

intersecting area. This can be easily done by 

introducing an intersection factor _ij =  Aij=Ai 

which results in αij depends on 

the distance between the participating MCs i and j. 

Similar to the non-streaming algorithm 

CHAMELEON [13], we want to combine MCs 

which are close together and have high 

interconnectivity. This objective can be achieved  

by simply choosing a single global intersection 

factor α. This leads to the concept of α -

connectedness. 
 

Definition 4.2. Two MCs, i and j, are α -connected 

iffcij≥α, where α is the user-defined intersection 

factor. 

 

               For two-dimensional data the intersection 

factor α has a theoretical maximum of 0.391 for an 

area of uniform density when the two MCs are 

optimally packed (the centers are exactly r apart). 

However, in dynamic clustering situations MCs 

may not be perfectly packed all the time and minor 

variations in the observed density in the data are 

expected. Therefore, a smaller value than the 

theoretically obtained maximum of 0.391 will be 

used in practice. It is important to notice that a 

threshold on α is a single decision criterion which 

combines the fact that two MCs are very close to 

each other and that the density between them is 

sufficiently high. Two MCs have to be close 

together or the intersecting area and thus the 

expected weight in the intersection will be small 

and the density between the MCs has to be high 

relative to the density of the two MCs. This makes 

using the 

concept of α -connectedness very convenient. 
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            For 2-dimensional data we suggest α = :3 

which is a less stringent cut-off than the theoretical 

maximum. Doing this will also connect MCs, even 

if they have not (yet) moved into a perfect packing 

arrangement. Note also that the definitions of α -

connectedness uses the connectivity graph which 

depends on the density of the participating MCs 

and thus it can automatically handle clusters of 

vastly different density within a single clustering. 

4.2 Noise Clusters 

               To remove noisy MCs from the final 

clustering, we have to detect these MCs. Noisy 

clusters are typically characterized as having low 

density represented by a small weight. Since the 

weight is related to the number of points covered 

by the MC, we use a user-set minimum weight 

threshold to identify noisy MCs. This is related to 

minPoints in DBSCAN or Cm used by D-Stream. 

Definition 4.3. The set of noisy MCs, MCnoisy, is 

the subset of MC containing the MCs with less than 

a userspecified minimum weight wmin. That is, 

MCnoisy = { MCi| MCi∈ MC∧wi<wmin}. 

 

        Given the definition of noisy and weak 

clusters, we can define strong MCs which should 

be used in the clustering. 

 

Definition 4.4. A strong MC is a MC that is not noisy 

or weak, i.e., MCstrong = MC \ (MCnoisy   

∪MCweak). 

Note that tgap is typically chosen such that 

MCweak⊆MCnoisy and therefore the exact choice 

of tgap has no influence on the resulting clustering, 

only influencing runtime performance and memory 

requirements. 

 
Algorithm 3 Reclustering using shared 

densitygraph. 

 
Require:  λ, α,wmin,t, and S from 

theclustering. 

1: function RECLUSTER( ) 

2: weighted adjacency list C ← ∅d 

connectivitygraph 

3: for each sij∈Sdo d construct 

connectivitygraph 

4: if MCi[w] ≥ wmin∧MCj[w] ≥ 

wminthen 

5: cij← 

6: endif 

7.            end for 

8: returnfindConnectedComponents(C α) 

9 :  EN D FU NC TIO N  

 
4.3 The Offline Algorithm 

The parameters are the intersection. Calculate a 

Density between A3 *(A1,A2,A3,A4,A5,A6) 

 

Table 1 Calculate a Density between A3*(A1-A6) 

 
TABLE 2. Relavance data 

 
      The connectivity graph C is constructed using 

only shared density entries between strong MCs. 

Finally, the edges in the connectivity graph with a 

connectivity value greater than the intersection 

threshold are used to find connected components 

representing the final clusters. 

 

4.4 Relationship to Other Algorithms 

          DBSTREAM is closely related to DBSCAN 

[10] with two important differences. Similar to 

DenStream [6], density estimates are calculated for 

micro-clusters rather than the epsilon neighborhood 

around each point. This reduces computational 

complexity significantly. The second change is that 

DBSCAN’s concept of reachability is replaced by 

α - connectivity. Reachability only reflects 

closeness of data points, while α -connectivity also 

incorporates interconnectivity introduced by 

CHAMELEON [13]. 

             In general, the connectivity graph 

developed in this paper can be seen as a special 

case of a shared nearest neighbor graph where the 

neighbors shared by two MCs are  given by the 

points in the shared area. As such it does not 

represent k shared nearest neighbors but the set of 

neighbors given by a fixed radius. DBSTREAM 

uses the most simple approach to partition the 

connectivity graph by using α as a global threshold 

and then finding connected components. However, 

any graph partitioning scheme, e.g., the ones used 

for CHAMELEON or spectral clustering, can be 

used to detect clusters. 

 

   Compared to D-Stream’s concept of attraction 

which is used between grid cells, DBSTREAM’s 

concept of α -connectivity is also applicable to 

micro-clusters. DBSTREAM’s update strategy for 

micro cluster centers based on ideas from 

competitive learning allows the centers to move 

towards areas of maximal local density, while 
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DStream’s grid is fixed. This makes DBSTREAM 

more flexible which will be illustrated in the 

experiments by the fact that DBSTREAM typically 

needs fewer MCs to model the same data stream. 

6 CONCLUSION 

In this paper, we have developed the first data 

stream clustering algorithm which explicitly 

records the density in the area shared by micro-

clusters and uses this information for reclustering. 

We have introduced the shared density graph 

together with the algorithms needed to maintain the 

graph in the online component of a data stream 

mining algorithm. Although, we showed that the 

worst-case memory requirements of the shared 

density graph grow extremely fast with data 

dimensionality, complexity analysis and 

experiments reveal that the procedure can be 

effectively applied to data sets of moderate 

dimensionality. Experiments also show that shared-

density reclustering already performs extremely 

well when the online data stream clustering  

component is set to produce a small number of 

large MCs. Other popular reclustering strategies 

can only slightly improve over the results of shared 

density reclustering and need significantly more 

MCs to achieve comparable results. This is an 

important advantage since it implies that we can 

tune the online component to produce less micro-

clusters for shared-density reclustering. This 

improves performance and, in many cases, the 

saved memory more than offset the memory 

requirement for the shared density graph. 
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