
 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 1

CLUSTERING DATA STREAMS USING SHARED DENSITY BETWEEN MICRO-

CLUSTERS

SRINIVASARAO PAMIDI
1
, N.NAVEEN KUMAR

2

1M.Tech Student, Dept of CSE, NALANDA INSTITUTE OF ENGINEERING TECHNOLOGY, AP
2Associate professor, Dept of CSE, NALANDA INSTITUTE OF ENGINEERING TECHNOLOGY, AP

Abstract-

As we taken micro cluster in streaming data, cluster data streaminghas been become

an important technique, which used for data and knowledge technology. A generally we

approach is to describing the data stream in Problem solving-time with an onlineprocess into

a huge number of so called micro clusters. Micro clusters represent provincial density

estimates by aggregating the information of every data points in a defined particular area. On

Requirement, a converted using conventional clustering algorithm is used at in a second

offline step by step to re-cluster theMicroclusters into huge final clusters. For re-clustering,

the midpoint of the micro clusterissuing as pseudo points are with the density assessment

used as their converted weights. After all, contain information Regarding density in the area

between microclusters is not conserve in the online process and using re-clustering is

established on possibly wrong assumptions about the sharing of data within process between

microclusters. This paper describes DATABSAESTREAM, the first step micro clusterbased

on online clustering basic that especially captures the density between this microclusters

along a shared density graph. The density information using in this graph is then shows for

re-clustering based on which actual density between two adjacent micro clusters. We present

that the space and time complexity of maintains using the shared density graph. Experiment

on a broad range of fabricatedand data sets highlight particular that using shared density

improves is clustering quality up to other popular data stream clustering many methods which

require the formation of a huger number of mini micro-clusters to produce comparable results over here.

Index Terms— DATABASESTREAM, Data mining,density-based clustering, data stream clustering.

I. INTRODUCTION

A RE-CLUSTERING data stream [2], [3],

[5], [7] has become auseful technique for data and

knowledge technology information. A data stream

is an arranged and potentiallyunbounded

arrangement of data points using. Such Data

streams ofarriving data are developed for every

type of techniqueand adding GPS data from latest

smart phones, webstream data, computer network

operating data, telecommunication connection

between data, and reading from wireless sensor

networks.Data stream clustering is normally done

as a two-step process withonline step which

summary the data into every micro clusters and

grid cells then, other step in an offline process,these

all micro-clusterare re-clustered or merged into a

less number of final clusters. Thereclustering

herefor an offline process and which thus not time

critical, it is generally not presented in detail in

paper about new data stream clustering algorithms.

Most papers suggest touse anexisting conventionalis

clustering algorithm,

wherethemicroclustersareusedaspseudopoints in

cluster.Other approach used in Den Stream [4] is to

use reachablewhere all micro clusters areless than a

provided distance from each other, linked balanced

to form particular clusters. Grid-based algorithms

merge two adjacent dense grid cells to form many

clustersCurrent re-clustering approaches

completely ignore everydata density in the area

between the micro-clusters and thus might join

micro clusters which are

closetogetherbutatthesametimeseparatedbyasmallar

ea of very low density. To locate this problem,

introduced an increase to the gridbased

DBStreamalgorithm based on the concept of

appealbetween two adjacent grids cell and showed

itseffective process.We present this paper, we

developing and checking a new process tolocate

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 2

this problem for the micro cluster-based algorithm.

We present the technique of a shared density graph

that we explicitly capture thedensityin main data

between micro clusters during clustering and then

show how the graph can be used as for re-clustering

micro-clusters. Usingofourknowledge, this paper is

present the first to propose and investigate using a

shared-density-based re-clustering this approach

for data stream clustering process.The paper is

balancing as follows. After a discussion of the

background process in Section 2, we discuss in

Section 3 the shared density graph for and the

algorithm used tocapturethedensitybetweenmany

microclustersintheonline process. here In Section 4

we explain the re-clustering approach which is

based on clustering or finding connected in the

shared density the graph. In Section 5 we present

the computational complexity of the maintaining

the shared density graph. In Section 6 contains

detailed experiments are with synthetic and data

sets. We concluding the paper with Section7 and

etc.

II. BACKGROUND

 Density-based clustering is a well-

researched area and we can only give a very brief

overview here. DBSCAN [10] and several of its

improvements can be seen as the proto typical

density-based clustering approach. DBSCAN

estimates the density around each data point by

counting the number of points in a user-specified

eps-neighborhood and applies user-specified

thresholds to identify core, border and noise points.

In a second step, core points are joined into a

cluster if they are density-reachable (i.e., there is a

chain of core points where one falls inside the eps-

neighborhood of the next). Finally, border points

are assigned to clusters. Other approaches are

based on kernel density estimation (e.g.,

DENCLUE [11]) or use shared nearest neighbors

(e.g., SNN [12], CHAMELEON [13]).

 However, these algorithms were not

developed with data streams in mind. A data stream

is an ordered and potentially unbounded sequence

of data points X = hx1; x2; x3; : : :i. It is not

possible to permanently store all the data in the

stream which implies that repeated random access

to the data is infeasible. Also, data streams exhibit

concept drift over time where the position and/or

shape of clusters changes, and new clusters may

appear or existing clusters disappear. This makes

the application of existing clustering algorithms

difficult. Data stream clustering algorithms limit

data access to a single pass over the data and adapt

to concept drift. Over the last 10 years, many

algorithms for clustering data streams have been

proposed [5], [6], [8], [9], [14], [15], [16], [17],

[18], [19], [20]. Most data stream clustering

algorithms use a two-stage online/offline approach

[4]:

1) Online: Summarize the data using a set of k0

microclusters organized in a space-efficient data

structure, which also enables fast lookup. Micro-

clusters are representatives for sets of similar data

points and are created using a single pass over the

data (typically in real time when the data stream

arrives). Micro-clusters are typically represented by

cluster centers and additional statistics as weight

(density) and dispersion (variance). Each new data

point is assigned to its closest (in terms of a

similarity function) micro-cluster. Some algorithms

use a grid instead and non-empty grid cells

represent microclusters (e.g., [8], [9]). If a new data

point cannot be assigned to an existing micro-

cluster, a new microcluster is created. The

algorithm might also perform some housekeeping

(merging or deleting microclusters) to keep the

number of micro-clusters at a manageable size or to

remove noise or information outdated due to

concept drift.

2) Offline: When the user or the application

requires a clustering, the k0 micro-clusters are

reclustered into k (k _ k0) final clusters sometimes

referred to as macro-clusters. Since the offline part

is usually not regarded time critical, most

researchers only state that they use a conventional

clustering algorithm (typically k-means or a

variation of DBSCAN [10]) by regarding the

micro-cluster center positions as pseudo-points.

The algorithms are often modified to take also the

weight of micro-clusters into account.

Fig. 1. Problem with reclustering when dense areas

are separated bysmall areas of low density with (a)

micro clusters and (b) grid cells.

 Reclustering methods based solely on

micro-clusters only, take closeness of the micro-

clusters into account. This makes it likely that two

micro-clusters which are close to each other, but

separated by an area of low density still will be

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 3

merged into a cluster. Information about the

density between micro-clusters is not available

since the information does not get recorded in the

online step and the original data points are no

longer available. Figure 1(a) illustrates the problem

where the micro-clusters MC1 and MC2 will be

merged as long as their distance d is low. This is

even true when density-based clustering methods

(e.g., DBSCAN) are used in the offline reclustering

step, since the reclustering is still exclusively based

on the micro-cluster centers and weights.

 Several density-based approaches have been

proposed for data-stream clustering. Density-based

data stream clustering algorithms like D-Stream [7]

and MR-Stream [8] use the idea of density

estimation in grid cells in the online step. In the

reclustering step these algorithms group adjacent

dense grid cells into clusters. However, Tu and

Chen [9] show that this leads to a problem when

the data points within each cell are not uniformly

distributed and two dense cells are separated by a

small area of low density. Figure 1(b) illustrates

this problem where the grid cells 1 through 6 are

merged because 3 and 4 are adjacent ignoring the

area of low density separating them. However, this

comes at high computational cost. MR-Stream [8]

approaches this problem by dynamically creating

grids at multiple resolutions using a quad tree.

LeaDen-Stream [20] addresses the same problem

by introducing the concept of representing a MC by

multiple mini-micro leaders and uses this finer

representation for clustering.

 For non-streaming clustering,

CHAMELEON [13] proposes a solution to the

problem by using both closeness and

interconnectivity for clustering. An extension to

DStream [9] implements this concept for data

stream clustering in the form of defining attraction

between grid cells as a measure of

interconnectivity. Attraction information is

collected during the online clustering step. For each

data point that is added to a grid cell a hypercube of

a userspecified size is created and for each adjacent

grid the fraction of the hypercube’s volume

intersecting with that grid cell is recorded as the

attraction between the point and that grid cell. The

attraction between a grid cell and one of its

neighbors is defined as the sum of the attractions of

all its assigned points with the neighboring cell. For

reclustering, adjacent dense grid cells are only

merged if the attraction between the cells is high

enough. Attraction measures the closeness of data

points in one cell to neighboring cells and not

density. It is also not directly applicable to general

microclusters. In the following we will develop a

technique to obtain density-based connectivity

estimated between microclusters directly from the

data.

III. THE DBSTREAM ONLINE

COMPONENT
 Typical micro-cluster-based data stream

clustering algorithms retain the density within each

micro-cluster (MC) as some form of weight (e.g.,

the number of points assigned to the MC). Some

algorithms also capture the dispersion of the points

by recording variance. For reclustering, however,

only the distances between the MCs and their

weights are used. In this setting, MCs which are

closer to each other are more likely to end up in the

same cluster. This is even true if a density-based

algorithm like DBSCAN [10] is used for

reclustering since here only the position of the MC

centers and their weights are used. The density in

the area between MCs is not available since it is

not retained during the online stage.

 The basic idea of this work is that if we

can capture not only the distance between two

adjacent MCs but also the connectivity using the

density of the original data in the area between the

MCs, then the reclustering results may be

improved. In the following we develop

DBSTREAM which stands for density-based

stream clustering.

3.1 Leader-based Clustering

 Leader-based clustering was introduced by

Hardigan [21] as a conventional clustering

algorithm. It is straight-forward to apply the idea to

data streams (see, e.g., [20]).

 DBSTREAM represents each MC by a leader (a

data point defining the MC’s center) and the

density in an area of a user-specified radius r

(threshold) around the center. This is similar to

DBSCAN’s concept of counting the points is an

eps-neighborhood, however, here the density is not

estimated for each point, but only for each MC

which can easily be achieved for streaming data. A

new data point is assigned to an existing MC

(leader) if it is within a fixed radius of its center.

The assigned point increases the density estimate of

the chosen cluster and the MC’s center is updated

to move towards the new data point. If the data

point falls in the assignment area of several MCs

then all of them are updated. If a data point cannot

be assigned to any existing MC, a new MC (leader)

is created for the point. Finding the potential

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 4

clusters for a new data point is a fixed-radius

nearest-neighbor problem [22] which can be

efficiently dealt with for data of moderate

dimensionality using spatial indexing data

structures like a k-d tree [23]. Variations of this

simple algorithm were suggested in [24] for outlier

detection and in [25] for sequence modeling. The

base algorithm stores for each MC a weight which

is the number of data points assigned to the MC

(see w1 to w4 in Figure 2). The density can be

approximated by this weight over the size of the

MC’s assignment area. Note that we use for

simplicity the area here, however, the approach is

not restricted to two-dimensional data. For higher-

dimensional data volume is substituted for area.

Definition 3.1. The density of MC iis estimated

by,

wherewi is the weight and Ai, the area of the circle

with radius r around the center of MC i.

3.2 Capturing Shared Density

Capturing shared density directly in the

online component is a new concept introduced in

this paper. The fact, that in dense areas MCs will

have an overlapping assignment area, can be used

to measure density between MCs by counting the

points which are assigned to two or more MCs. The

idea is that high density in the intersection area

relative to the rest of the MCs’ area means that the

two MCs share an area of high density and should

be part of the same macrocluster. In the example in

Figure 2 we see that MC2 and MC3 are close to

each other and overlap. However, the shared

weight s2;3 is small compared to the weight of

each of the two involved MCs indicating that the

two MCs do not form a single area of high density.

On the other hand, MC3 andMC4 are more distant,

but their shared weight s3;4 is large indicating that

both MCs form an area of high density and thus

should form a single macro-cluster. The shared

density between two MCs can be estimate by:

Fig. 2. MC1 is a single MC. MC2 and MC3 are

close to each other butthe density between them is

low relative to the two MCs densities whileMC3

and MC4 are connected by a high density area.

Definition 3.2. The shared density between two

MCs, i and j, is estimated by

wheresij is the shared weight and Aij is the size of

the overlapping area between the MCs.

Based on shared densities we can define a shared

density graph.

Definition 3.3. A shared density graph Gsd =

(V;E) isan undirected weighted graph, where the

set of verticesis the set of all MCs, i.e., V (Gsd) =

MC, and the setof edges

represents all the pairs of MCs for which we

havepairwise density estimates. Each edge is

labeled with thepairwise density estimate ^_ij .

Note that most MCs will not share density with

each other in a typical clustering. This leads to a

very sparse shared density graph. This fact can be

exploited for more efficient storage and

manipulation of the graph. We represent the sparse

graph by a weighted adjacency list S. Furthermore,

during clustering we already find all fixed-radius

nearest-neighbors. Therefore, obtaining shared

weights does not incur any additional increase in

search time.

3.4 Fading and Forgetting Data

To adapt to evolving data streams we use the

exponential fading strategy introduced in

DenStream [6] and used in many other algorithms.

Cluster weights are faded in

 every time step by a factor of where

> 0 is a user-specified fading factor. We

implement fading in a similar way as in D-Stream

[9], where fading is only applied when a value

changes (e.g., the weight of a MC is updated). For

example, if the current time-step is t = 10 and the

weight w was last updated at tw = 5 then we apply

for fading the factor resulting in the

correct fading for five time steps. In order for this

approach to work we have to keep a timestamp

with the time when fading was applied last for each

value that is subject to fading.

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 5

 The leader-based clustering algorithm

only creates new and updates existing MCs. Over

time, noise will cause the creation of low-weight

MCs and concept shift will make some MCs

obsolete. Fading will reduce the weight ofthese

MCs over time and the reclustering has a

mechanism to exclude these MCs. However, these

MCs will still be stored in memory and make

finding the fixed-radius nearest neighbors during

the online clustering process slower. This problem

can be addressed by removing weak MCs and weak

entries in the shared density graph. In the following

we define weak MCs and weak shared densities.

Definition 3.4.We define MC mci as a weak MC if

its weight wi increases on average by less than one

new data point in a user-specified time interval

tgap.

Definition 3.5.We define a weak entry in the

shared density graph as an entry between two

MCs, i and j, which on average increases its weight

sij by less then from new points in the time

interval tgap. is the intersection factor related to

the area of the overlap of the MCs relative to the

area covered by MCs.

The rational of using is that the overlap

areas are smaller than the assignment areas of MCs

and thus are likely to receive less weight. will be

discussed in detail in the reclustering phase.
 Let us assume that we check every tgap time

step and remove weak MCs and weak entries in the

shared density graph to recover memory and

improve the clustering algorithm’s processing

speed. To ensure that we only remove weak entries,

we can use the weight At any

time, all entries that have a faded weight of less

than wweak are guaranteed to be weak. This is easy

to see since any entry that gets on average an

additional weight of during each tgap

interval will have a weight of at least
which is greater or equal to

wweak. Noise entries (MCs and entries in the

shared density graph) often receive only a single

data point and will reach wweak after tgap time

steps.

Obsolete MCs or entries in the shared density

graph stop to receive data points and thus their

weight will be faded till it falls below wweak and

then they are removed. It is easy to show that for an

entry with a weight w it will take

time steps to reach wweak.

Forexample, at = 0:01 and tgap = 1000 it will take

1333 time steps for an obsolete MC with a weight

of w = 10 to fall below wweak. The same logic

applies to shared density entries using _wweak.

Note that the definition of weak entries and wweak

is only used for memory management purpose.

Reclustering uses the definition of strong entries

(see Section 4). Therefore, the quality of the final

clustering is not affected by the choice of tgap as

long as it is not set to a time interval which is too

short for actual MCs and entries in the shared

density graph to receive at least one data point.

This clearly depends on the expected number of

MCs and therefore depends on the chosen

clustering radius r and the structure of the data

stream to be clustered. A low multiple of the

number of expected MCs is typically sufficient.

The parameter tgap can also be dynamically

adapted during running the clustering algorithm.

For example tgap can be reduced to mark more

entries as weak and remove them more often if

memory or processing speed gets low. On the other

hand, tgap can be increased during clustering if not

enough structure of the data stream is retained.

3.5 The Complete Online Algorithm

 Algorithm 1 shows our approach and the used

clustering data structures and user-specified

parameters in detail.

Micro-clusters are stored as a set MC. Each micro-

cluster is represented by the tuple (c;w; t)

representing the clustercenter, the cluster weight

and the last time it was updated, respectively. The

weighted adjacency list S represents thesparse

shared density graph which captures the weight of

the data points shared by MCs. Since shared

density estimates are also subject to fading, we also

store a timestamp with each entry. Fading also

shared density estimates is important since MCs are

allowed to move which over time would lead to

estimates of intersection areas the MC is not

covering anymore.

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 6

∈

←

←

←

M
C

← −

←
∈
N

∈
N

|N
|

∈ N ×
N

The user-specified parameters r (the radius around

the center of a MC within which data points will be

assigned to the cluster) and (the fading rate) are

part of the base algorithm. andwmin are

parameters for reclustering and memory anagement

and will be discussed later.

 Updating the clustering by adding a new

data point x to the clustering is defined by

Algorithm 1. First, we find all MCs for which x

falls within their radius. This is the same as asking

which MCs are within r from x, which is the

fixedradius nearest neighbor problem which can be

efficiently solved for data of low to moderate

dimensionality [22]. If no neighbor is found then a

new MC with a weight of 1 is created for x (line 4

in Algorithm 1). If one or more neighbors are

found then we update the MCs by applying the

appropriate fading, increasing their weight and then

we try to move them closer to x using the Gaussian

neighborhood function h() (lines 7–9).

 Next, we update the shared density graph

(lines 10–13). To prevent collapsing MCs, we

restrict the movement for MCs in case they come

closer than r to each other (lines 15–19). Finally,

we update the time step.

 The cleanup process is shown in

Algorithm 2. It is executed every tgap time steps

and removes weak MCs andweak entries in the

shared density graph to recover memory and

improve the clustering algorithm’s processing

speed.

4SHAREDDENSITY-BASED

RECLUSTERING

Reclustering represents the algorithm’s offline

component which uses the data captured by the

online component. For simplicity we discuss two-

dimensional data first and later discuss implications

for higher-dimensional data. For reclustering, we

want to join MCs which are connected by areas of

high density. This will allow us to form

macroclusters of arbitrary shape, similar to

hierarchical clustering with single-linkage or

DBSCAN’s reachability, while avoiding joining

MCs which are close to each other but are

separated by an area of low density

4.1 Micro-Cluster Connectivity

 In two dimensions, the assignment area of a

MC is given by . It is easy to show that the

intersecting area between two circles with equal

radius r and the centers exactly r apart from each

other is By normalizing the area

of the circle to A = 1 (i.e., setting the radius to)

 we get an intersection area A_ =

0:391.or 39.1% of the circle’s area. Since we

expect adjacent MCs i and j which form a single

macro-cluster in a dense area to eventually be

packed together till the center of one MC is very

close to the r boundary of the other, 39.1% is the

upper bound of the intersecting area.
Algorithm 1 Update DBSTREAM clustering.

Require: Clustering data structures initially empty

or 0

dset of MCs mc has elements mc = (c, w, t) d

center, weight, last updatetime

S dweighted adjacency list for shared

densitygraph sijS has an additional field t d time

of last update t ,dcurrenttimestep

Require: User-specified parameters

r d clusteringthreshold

λ d fadingfactor

tgapd cleanupinterval

wmind minimumweight

α d intersectionfactor

1: functionUPDATE(x) d new data pointx

2: find FixedRadiusNN(x, ,r)

3: if|N| <1then d create newMC

4: add (c = x, t = t, w = 1)to

5: else d update

existingMCs

6: for each ido

7: mci[w]mci[w]2−λ(t−mci[t])+1

8: mci[c] mci[c] + h(x,

mci[c])(xmci[c])

9: mci[t]t

dupdate shared density

10: foreachj where j >ido

11: sij sij2−λ(t−sij[t])+1

12: sij[t] t

13: endfor

14: endfor

dprevent collapsing clusters

15: for each(i,j) and j >ido

16: if dist(mci[c], mcj[c]) < rthen

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 7

(ρ̂+ρ̂)/2

←

17: revert mci[c], mcj[c] to

previouspositions

18: endif

19: endfor

20: endif

21: t t + 1

22: endfunction

Algorithm 2 Cleanup process to remove inactive

micro- clusters and shared density entries from

memory.

Require: λ, α, tgap, t, MC and S from the

clustering.

1: function CLEANUP()

2: wweak =2−λtgap

3: foreachmc do

4: if mc[w] 2−λ(t−mc[t]) < wweak

then

5: remove weak mcfrom

6: endif

7: endfor

8: foreachsij Sdo

9: ifsij2−λ(t−sij[t])<αwweakthen

10: remove weak shared density

sijfrom S

11: endif

12: endfor

13: end function

Less dense clusters will also have a lower shared

density. To detect clusters of different density

correctly, we need to define connectivity relative to

the densities (weights) of the participating clusters.

That is, for two MCs, i and j, which are next to

each other in the same macro-cluster we expect that
i.e., the density between the

MCs is similar to the average density inside the

MCs. To formalize this idea we introduce the

connectivity graph.

Definition 4.1. The connectivity graph Gc =

(V;E) is an undirected weighted graph with the

micro clusters as vertices, i.e., V (Gc) = MC. The

set of edges is defined by

with sij is the weight in the

intersecting area of MCs i and j and wi and wj are

the MCs’ weights. The edges are labeled with

weights given by cij .

Note that the connectivity is not calculated as

 and thus has to be corrected for the

difference in the size of the area of the MCs and the

intersecting area. This can be easily done by

introducing an intersection factor _ij = Aij=Ai

which results in αij depends on

the distance between the participating MCs i and j.

Similar to the non-streaming algorithm

CHAMELEON [13], we want to combine MCs

which are close together and have high

interconnectivity. This objective can be achieved

by simply choosing a single global intersection

factor α. This leads to the concept of α -

connectedness.

Definition 4.2. Two MCs, i and j, are α -connected

iffcij≥α, where α is the user-defined intersection

factor.

 For two-dimensional data the intersection

factor α has a theoretical maximum of 0.391 for an

area of uniform density when the two MCs are

optimally packed (the centers are exactly r apart).

However, in dynamic clustering situations MCs

may not be perfectly packed all the time and minor

variations in the observed density in the data are

expected. Therefore, a smaller value than the

theoretically obtained maximum of 0.391 will be

used in practice. It is important to notice that a

threshold on α is a single decision criterion which

combines the fact that two MCs are very close to

each other and that the density between them is

sufficiently high. Two MCs have to be close

together or the intersecting area and thus the

expected weight in the intersection will be small

and the density between the MCs has to be high

relative to the density of the two MCs. This makes

using the

concept of α -connectedness very convenient.

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 8

 For 2-dimensional data we suggest α = :3

which is a less stringent cut-off than the theoretical

maximum. Doing this will also connect MCs, even

if they have not (yet) moved into a perfect packing

arrangement. Note also that the definitions of α -

connectedness uses the connectivity graph which

depends on the density of the participating MCs

and thus it can automatically handle clusters of

vastly different density within a single clustering.

4.2 Noise Clusters

 To remove noisy MCs from the final

clustering, we have to detect these MCs. Noisy

clusters are typically characterized as having low

density represented by a small weight. Since the

weight is related to the number of points covered

by the MC, we use a user-set minimum weight

threshold to identify noisy MCs. This is related to

minPoints in DBSCAN or Cm used by D-Stream.

Definition 4.3. The set of noisy MCs, MCnoisy, is

the subset of MC containing the MCs with less than

a userspecified minimum weight wmin. That is,

MCnoisy = { MCi| MCi∈ MC∧wi<wmin}.

 Given the definition of noisy and weak

clusters, we can define strong MCs which should

be used in the clustering.

Definition 4.4. A strong MC is a MC that is not noisy

or weak, i.e., MCstrong = MC \ (MCnoisy

∪MCweak).

Note that tgap is typically chosen such that

MCweak⊆MCnoisy and therefore the exact choice

of tgap has no influence on the resulting clustering,

only influencing runtime performance and memory

requirements.

Algorithm 3 Reclustering using shared

densitygraph.

Require: λ, α,wmin,t, and S from

theclustering.

1: function RECLUSTER()

2: weighted adjacency list C ← ∅d

connectivitygraph

3: for each sij∈Sdo d construct

connectivitygraph

4: if MCi[w] ≥ wmin∧MCj[w] ≥

wminthen

5: cij←

6: endif

7. end for

8: returnfindConnectedComponents(C α)

9 : EN D FU NC TIO N

4.3 The Offline Algorithm

The parameters are the intersection. Calculate a

Density between A3 *(A1,A2,A3,A4,A5,A6)

Table 1 Calculate a Density between A3*(A1-A6)

TABLE 2. Relavance data

 The connectivity graph C is constructed using

only shared density entries between strong MCs.

Finally, the edges in the connectivity graph with a

connectivity value greater than the intersection

threshold are used to find connected components

representing the final clusters.

4.4 Relationship to Other Algorithms

 DBSTREAM is closely related to DBSCAN

[10] with two important differences. Similar to

DenStream [6], density estimates are calculated for

micro-clusters rather than the epsilon neighborhood

around each point. This reduces computational

complexity significantly. The second change is that

DBSCAN’s concept of reachability is replaced by

α - connectivity. Reachability only reflects

closeness of data points, while α -connectivity also

incorporates interconnectivity introduced by

CHAMELEON [13].

 In general, the connectivity graph

developed in this paper can be seen as a special

case of a shared nearest neighbor graph where the

neighbors shared by two MCs are given by the

points in the shared area. As such it does not

represent k shared nearest neighbors but the set of

neighbors given by a fixed radius. DBSTREAM

uses the most simple approach to partition the

connectivity graph by using α as a global threshold

and then finding connected components. However,

any graph partitioning scheme, e.g., the ones used

for CHAMELEON or spectral clustering, can be

used to detect clusters.

 Compared to D-Stream’s concept of attraction

which is used between grid cells, DBSTREAM’s

concept of α -connectivity is also applicable to

micro-clusters. DBSTREAM’s update strategy for

micro cluster centers based on ideas from

competitive learning allows the centers to move

towards areas of maximal local density, while

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 9

DStream’s grid is fixed. This makes DBSTREAM

more flexible which will be illustrated in the

experiments by the fact that DBSTREAM typically

needs fewer MCs to model the same data stream.

6 CONCLUSION

In this paper, we have developed the first data

stream clustering algorithm which explicitly

records the density in the area shared by micro-

clusters and uses this information for reclustering.

We have introduced the shared density graph

together with the algorithms needed to maintain the

graph in the online component of a data stream

mining algorithm. Although, we showed that the

worst-case memory requirements of the shared

density graph grow extremely fast with data

dimensionality, complexity analysis and

experiments reveal that the procedure can be

effectively applied to data sets of moderate

dimensionality. Experiments also show that shared-

density reclustering already performs extremely

well when the online data stream clustering

component is set to produce a small number of

large MCs. Other popular reclustering strategies

can only slightly improve over the results of shared

density reclustering and need significantly more

MCs to achieve comparable results. This is an

important advantage since it implies that we can

tune the online component to produce less micro-

clusters for shared-density reclustering. This

improves performance and, in many cases, the

saved memory more than offset the memory

requirement for the shared density graph.

REFERENCES

[1] S. Guha, N. Mishra, R. Motwani, and L.

O’Callaghan, “Clustering data streams,” in

Proceedings of the ACM Symposium on

Foundations of Computer Science, 12-14 Nov.

2000, pp. 359–366.

[2] C. Aggarwal, Data Streams: Models and

Algorithms, ser. Advances in Database Systems,

Springer, Ed., 2007.

[3] J. Gama, Knowledge Discovery from Data

Streams, 1st ed. Chapman & Hall/CRC, 2010.

[4] J. A. Silva, E. R. Faria, R. C. Barros, E. R.

Hruschka, A. C. P. L. F. d. Carvalho, and J. a.

Gama, “Data stream clustering: A survey,” ACM

Computing Surveys, vol. 46, no. 1, pp. 13:1–13:31,

Jul. 2013.

[5] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu,

“A framework for clustering evolving data

streams,” in Proceedings of the International

Conference on Very Large Data Bases (VLDB

’03), 2003, pp. 81–92.

[6] F. Cao, M. Ester, W. Qian, and A. Zhou,

“Density-based clustering over an evolving data

stream with noise,” in Proceedings of the 2006

SIAM International Conference on Data Mining.

SIAM, 2006, pp. 328–339.

[7] Y. Chen and L. Tu, “Density-based clustering

for real-time stream data,” in Proceedings of the

13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. New

York, NY, USA: ACM, 2007, pp. 133–142.

[8] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and

K. Zhang, “Densitybased clustering of data streams

at multiple resolutions,” ACM Transactions on

Knowledge Discovery from Data, vol. 3, no. 3, pp.

1–28, 2009.

[9] L. Tu and Y. Chen, “Stream data clustering

based on grid density and attraction,” ACM

Transactions on Knowledge Discovery from Data,

vol. 3, no. 3, pp. 1–27, 2009.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu,

“A density-based algorithm for discovering clusters

in large spatial databases with noise,” in

Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining (KDD’1996), 1996, pp. 226– 231.

[11] A. Hinneburg, E. Hinneburg, and D. A. Keim,

“An efficient approach to clustering in large

multimedia databases with noise,” in Proceedings

of the Fourth International Conference on

Knowledge Discovery and Data Mining (KDD-98).

AAAI Press, 1998, pp. 58– 65.

[12] L. Ertoz, M. Steinbach, and V. Kumar, “A

new shared nearest neighbor clustering algorithm

and its applications,” in Workshop on Clustering

High Dimensional Data and its Applications at 2nd

SIAM

International Conference on Data Mining, 2002.

[13] G. Karypis, E.-H. S. Han, and V. Kumar,

“Chameleon: Hierarchical clustering using

dynamic modeling,” Computer, vol. 32, no. 8, pp.

68–75, Aug. 1999. [Online].

Available:http://dx.doi.org/10.1109/2.781637

[14] S. Guha, A. Meyerson, N. Mishra, R.

Motwani, and L. O’Callaghan, “Clustering data

streams: Theory and practice,” IEEE Transactions

on Knowledge and Data Engineering, vol. 15, no.

3, pp. 515–528, 2003.

[15] C. C. Aggarwal, J. Han, J. Wang, and P. S.

Yu, “A framework for projected clustering of high

dimensional data streams,” in Proceedings of the

International Conference on Very Large Data

Bases

(VLDB ’04), 2004, pp. 852–863.

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE – 22, APR - JUNE, 2018 ISSN: 2320-1363

 10

[16] D. Tasoulis, N. Adams, and D. Hand,

“Unsupervised clustering in streaming data,” in

IEEE International Workshop on Mining Evolving

and Streaming Data. Sixth IEEE International

Conference on Data Mining (ICDM 2006), Dec.

2006, pp. 638–642.

[17] D. K. Tasoulis, G. Ross, and N. M. Adams,

“Visualising the cluster structure of data streams,”

in Advances in Intelligent Data Analysis VII, ser.

Lecture Notes in Computer Science. Springer,

2007, pp. 81–92.

[18] K. Udommanetanakit, T. Rakthanmanon, and

K. Waiyamai, “Estream: Evolution-based

technique for stream clustering,” in ADMA ’07:

Proceedings of the 3rd international conference on

Advanced Data Mining and Applications. Berlin,

Heidelberg: Springer-Verlag, 2007, pp. 605–615.

[19] P. Kranen, I. Assent, C. Baldauf, and T. Seidl,

“The clustree:indexing micro-clusters for anytime

stream mining,” Knowledge and Information

Systems, vol. 29, no. 2, pp. 249–272, 2011.

[20] A. Amini and T. Y. Wah, “Leaden-stream: A

leader densitybased clustering algorithm over

evolving data stream,” Journal of Computer and

Communications, vol. 1, no. 5, pp. 26–31, 2013.

